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ABSTRACT

Developments of advanced fiber-composite laminates as viable structural

components have introduced new complexities in design. Among these concerns

is the load-bearing capacity of these structures under multiaxial compressive

loading. In this study deformations and transverse shear stresses at buckling

and in the postbuckling range are analyzed to study the compressive failure

behavior of thin- and thick-section composite laminates.

The general formulation for buckling and postbuckling is based on

Newton/Raphson and Riks algorithms used in conjunction with a nonlinear large

deformation finite-element method. In order to assess the effect of

transverse shear on the buckling and postbuckling behavior a deformable shear

plate formulation is used.

The global load-deformation response and the transverse shear development in

the composite laminates during buckling and postbuckling are studied.

Potential changes in buckling mode in postbuckling are especially considered.

Effects of thickness, imperfection sensitivity, stress-biaxiality ratio,

boundary conditions and lamination layup on global buckling and postbuckling

response and on transverse shear development are also analyzed.
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1. INTRODUCTION

Composite materials offer attractive potentials to be tailored for advanced

engineering applications, for example high specific strength, specific

stiffness and fatigue resistance. With rapid developments of advanced fiber

composites as viable structural materials, evaluation, analysis and prediction

of the material behavior and structural performance with various lamination

variables and geometric configurations have become a primary concern,

especially under compression. However, along with improved structural

performance provided by composite materials, it has also come a level of

complqgity much greater than that encountered in conventional monolithic

materials. Additional complexities are related to material anisotropy and

heterogeneity, material and structural discontinuities and the large number of

lamination parameters involved. Especially high-performance thick-section

composite structures developing highly tridimensional stress fields are

prevalent.

A considerable amount of literature has been available, in both analytical and

experimental studies, which adresses the problem of orthotropic plates under

uniaxial compressive loading. Studies on the behavior of composite plates

under general biaxial compressive loading has not been comprehensive. The

effect of the interlaminar stresses on buckling and postbuckling behavior of

the composite laminates has not been fully studied yet. These stresses are

expected to have a negative effect on these structures, by reducing the

corresponding structure stiffness as well as inducing failure thlough

delamination. Properly understanding the development of transverse shear
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stresses in the postbuckling range will enable us to assess qualitatively and

quantitatively their local and global effects on the structure response.

These studies have a higher degree of complexity because of thu• non -linear

geometric and material considerations involved. A brief literature review on

the buckling and postbuckling analyses of fiber-comprsitu plates is given in

the next section.

Current design philosophy i; directed to require these composite components to

carry the load well into the postbuckling state. Thus the buckling and

postbuckling behavior of fiber-composite laminates under various combinations

of biaxial compression should be carefully studied. The large number of

problem parameter- involved, such as geometry, constituent materials,

lamination, boundary conditions and load characteristics, should be analyzed

systematically to provide a comprehensive understanding of the compressive

instability problem.

In this study, a detailed analysis of the mechanical response of composite

structures under biaxial comnpressive loading is conducted. These analyses are

carried out by thc use of a nonlineir finite element method as discussed in

Sec. 3. Buckling and postbuckling deformations and associated characteristics

of fiber-composite laminated plates have been obtained. Magnitudes and

effects of transverse shear stresses, which arise especially in the

postbuckling range for thick laminates, are determined in Sec. 4. Also,

effects of boundar' conditions, lamination stacking sequence and stress-

biaxiality ratio on the buckling and postbuckling behavior are examined.
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2. LITERATURE REVIEW

2.1. BUCKLING ANALYSES OF COMPOSITE LAMINATES

Approxiicate ainalyt~ical solutions for prtedIct in-g uckling loads of co:iiposito

laminates, based on C<i lerki n and Rayluigh-Rit-z methods, have been rperp(1-d 1iv

many researchers [1-3]. For exampie, Ashton) and Love [2] have used the

Rayleigh-Ritz method in the case of anisotropic thin plates under shear

stress. Experiments have also been conducted and good agreement between

experimental and analytical results has been obtained.

The effect of transverse shear deformation through composite plate thickness,

especially in thick composites, on buckling has been studied by several

researchers [3-4j, using Mindlin-type plate formulation in an analytical

approach or a finite-element approach. These studies depict the decreasing

effect of transverse shear deformation on the buckling load. This effect has

been shown to be more important for the cases with clamped boundary conditions

than with simply-supported ones.

Limitations of the Mindlin-type, plate formulation to model the behavior of

thick composite laminates motivate the development of buckling analyses, using

higher-order plate formulations or a 3-D approach in conjunction with the

finite element method. The 3-D displacement-based, element, developed by Owen

and Li 5], makes use of pieccwise linear approximations for in-plane

displacements and a constant transverse displacement through the element

thickness, and in-plane quadratic ititerpolation for thlese three displacement



variables. A linearized buckling analysis nas been developed and more

accurate results than conventional thin and thick composite )late form-,ilat ions

have been obtainted for modelling tha negati-e effec of transve,_rse f;he••r

YIformation. It also offers simplicity and computer-time e( anomy wl.en used in

Conjunction with a substructuring technique, compared to a hybrid-stress, 1-1)

multilayer finite-element formulation [63 However the 3-D displacc-ment-

based, finite-element formulation may not accurately model the 3-I) stres:

state .n c-wposite laminates since conditions of interface continuity of

interlaminar stresses, and surface traction-free boundary conditions at the

edges and other geometric boundaries are satisfied only approximately.

The hybrid-stress finite-element formulation originally developed by Plan [6]

overcomes these limitations. Interlaminar stress continuity at layer

interfaces and surface traction-free boundary conditions are exactly sat4sfied

through the assunmption of an equilibrium stress field by introducing proper

lamina stress parameters. But formulation is generally rather elaborate and

Complex, and may require a large amount of computing time so that its use is

still limited to dvanced researchers. No analysis of buckling of composite

lami:iates has been conducted using this formulation.

2.2. POSTBUCKLING ANALYSES OF COMPOSITE PLATES

Postbuckling responses of thick composite laminates in shear and under biaxial

compression have been obtained by various methods, for example, the Rayleigh-

Ritz method [7] and the finite element method [8]. Both Kirchhoff thin-plate

and Mindlin plate formu I ations have been considered, The results show that



transverse shear reduces the postbuckling stiff iess of a thick composite

laminate platFo for both loading cases coiis;ý dered. Moreover, results from [8]

haIs pointed out the drastic effect of houndary condi t.ions on the buckling load

:,i l .thclL i ,g st ifiness of composi te strutrtules.

i:ilv fe,,; comparisons buetý,- ana-vtical results itid experimental data of

t .ckl ,w 11 PoSthký:kli-,, of t ibeh-composite lami natots have been conducted

.. u:moricAl solutions, using finite element methods [91 and the Rayleigh-Ritz

eE0eigv.y iiLthod Fi0], have been shown to correlate well with the experimental

behavior of thin composite laminate plates with unidirectional, quasi-

i-otropic and general fiber orientations under uniaxial compression up Lo

failure. However, no comparison has been made for thick laminates or fiber

composites subjected to biaxial compression. Therefore accuracy of the

numerical solutions based on transverse-shear deformation theories or 3-D

solid element formulation to evaluate the effect of interlaminar stresses on

the postbuckling response of thick laminates has not been validated.



3. METHODS OF ANALYSIS

At buckling, bifurcation from the primary in-plane deformation state to an

out-of-plane deformation state occurs. At the critical point, variation of

the potential energy is zero (neutral equilibrium) which leads to the bending'

strain energy equal to the external work done by the in-plane loads. During

postbuckling, the out-of-plane deformation becomes stable and the

corresponding potential energy of the structure is minimum. Therefore the

structure deforms in this secondary deformation state with increasing in-

plane compressive load.

This study makes use of the finite element method implemented in ABAQUS finite

element program [i1]. Versatility and applicability of this method enable to

model accurately the buckling and postbuckling of composite structures with

critical responses, such as changes in buckling mode, presence of a cutout or

highly tridimensional stress field. The latter two cases will be especially

investigated in future studies.

3.1. FINITE ELEMENT FORMULATION

The finite element procedure used in ABAQUS is based on the incremental,

updated Lagrangian formulation. This formulation expresses equilibrium at a

particular load level in terms of the previously calculated equilibrium

configuration. At the end of every increment, the coordinates of the body are

updated using the incri.e,Ltntal displacements predicted. The principle ot

virtual work is generally used for this formulation. By using the finitc
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element modeling scheme for spatial discretization, a system of non-linear

algebraic equations results in the form:

Kt AU = AP (1)

with: - Kt tangent stiffness matrix

- AU incremental nodal displacement vector

- AP incremental nodal force vector

3.1.1. Linearized buckling analysis

Assuming that the deformation is linear before buckling with small

deformations, the terms which are functions of nodal displacements in the

general non-linear tangent stiffness matrix can be neglected. The linearized

formulation then gives rise to a tangent stiffness matrix with the following

expression:

Kt = KL + Kg9() (2)

where KL is a linear stiffness matrix and K a geometric stiffness matrix

linearly dependent upon the stresses.

The bifurcation solution for the linearized buckling problem may be determined

from the following eigenvalue equation:

[KL + AKg9(o)] U = 0 (3)

where A is an eigenvalue and U an eigenvector. The critical load Pcr can be

found from Pcr = I PO where Po is the nominal load which corresponds to the

stress state co.

7



A subspace iteration procedure is used in ABAQUS to solve for the eigenvalues

and aiganvectors. The buckling load is then govern I by the lowest

cijenvalue, and the buckling mode by the corresponding eigenvector.

3.1.2. Postbuckling analysis

During postbuckling the nonlinear equilibrium eqa,,tiors (1) are solved at each

load increment using the Newton-Raphson method. In order to model the

potential decrease in the load and displacement as the solution evolves (case

of unstable problems), a modified Riks nonlinear incremental-iterative

algorithm [12] is used (implemented in ABAQUS) to construct the equilibrium

solution path. In this modified Riks scheme, as in the basic Riks algorithm

[13], the nonlinear procedure is based on a motion along the tangent line

(defined by the tangent stiffness matrix) at the previous solution point of a

given distance. Search for an equilibrium solution in the plane that passes

through the point perpendicular to the same tangent line can be carried out

ulsing an iterative algorithm.

To model bifurcation from the pfebuckling path to the postbuckling path.

geometric imperfection, in the form of transverse displacements along the z-

axis (see Fig. I for the plate geometry), is introduced in the nodal

coordinates in the initial state. The imperfection is generally constructed

from a linear combination of the three lowest eigenmodes of the structure.

determined by a linearized buckling analysis, as follows:

I = E [t4 ± aM2 ± M31 (4)

where I is the resulting imperfection, e is a scaling coefficient, and Ml, m,

8



M3 are the normalized eigenmodes.

3.1.3. Element formulation

The element used is a degenerated plate element from an isoparametric 8-nodes

quadrilateral shell element with six degrees of freedom per node (three

displacements and three rotations). This shell element is based on a shear-

deformable shell formulation [14] which allows transverse shear deformation.

This element formulation has been implemented in ABAQUS finite element program

and is used in the analyses performed in this study.

From the analysis, values of transverse shear forces Qx and Qy at each

Gaussian point of the element are determined in every loac increment. These

forces represent resultants of transverse shear stresses along the laminate

thickness directions:

t/2. t/2
Qx f rxz dz Qy f ryz dz (5)

-t/2 -t/2

Therefore they give a first insight in the effect of transverse shear on

buckling and postbuckling of fiber-composite plates.

3.2. Solution accuracy and convergence

Validity studies of the buckling and postbuckling finite-element formulations

are conducted for a thin composite plate. Comparisons are made with

experimental data and numerical results [9] for a rectangular carbon-epoxy

composite plate with (±45/02/±45/02/±45/0/90]s •tacking sequences (Fig. 2).

9



As in the numerical solution of this Reference, the imperfection is taken as

the lowest mode (buckling mode) scaled to 1% of the plate thickness. Mesh

r•einements are conducted. Buckling load and postbuckling stiffness of the

present solutions obtained are in excellent agreement w _th the reference

solution.

In addition to the aforementioned comparison, detailed studies of the buckling

and postbuckling finite-element solutions are also carried out to ensure the

convergence of global load/end shortening relationship and transverse shear

developed in the postbuckling range, in composite laminates with different

lamination and geometric parameters.

Three mesh refinements are first conducted to examine the composite

load/displacement response. The three composite plates considered here have

clamped boundary conditions on all sides but differ in lamination and

geometric parameters. For the first case the plate considered is a 00

unidirectional laminated plate under biaxial compression (Nx/Ny = 2) with a

thickness/length ratio of 0.05. For the two following cases quasi-isotropic

laminate plates with [0/ 9 0/±45 ]ns stacking sequences under biaxial compression

(N:,:/Ny = 2) are studied for different thickness/length ratios. The second

case corresponds to a ratio of 0.02 while the last one has a ratio of 0.08.

These three composite plates are used in the analyses described in Sec. 4.

Solution convergence is found to depend strongly on the laminate

thickness/length ratio. The larger this ratio is, the slower the rate of

rotnvergence obtained is. For the lowest ratio considered (t/L = 0.02) the

10



converged mesh is a 5x5 finite-element mesh (Fig. 3) while for increasing

ratios (0.05 and 0.08) the converged meshes are a 6x6 finite-element mesh

(Fig. 4) and a 9:x9 finite-elemtent mesh (Fig. 5), respectively. The highest

ratio gives a much smaller rate of convergence because activation of higher

(i.e. second and third) modes takes place in the postbuckling range beyond

NX= 1.5 Nxcr (Fig. 5). No change in buckling mode really occurs as the

structure gradually losses its stiffness and becomes unstable. Corresponding

loss of stability of the numerical solution are obtained at decreasing load

levels ior incruasing mesh refinements.

Convergence of transverse shear stress solutions developed in the postbuckling

range is also studied. The case considered is a clamped laminated plate with

[0/90/±45]12s layup under biaxial compression (Nx/Ny = 2) with a thickness/

length ratio of 0.04 corresponding to the analyses performed in Sec. 4.2. Two

types of convergence parameters are selected: the transverse force

distributions over the whole structure and the local transverse section forces

at the particular location (x,y) = (-3,-3) (in) (see Fig. I for the plate

geometry). In this last case the forces are interpolated from the values of

transvevse section forces at the four Gaussian points of the element

containing this location (using a bilinear interpolation).

As expected, the rate of convergence for the transverse shear stress solutions

is much smaller than the one for the global load/end shortening response,

since transverse shear stresses are rather local. For the case with 25

elements (5x5 mesh) the finite element model gives a converged result for the

load/end shortenimog curve (Fig 6). On the other hand, 81 elements (9x9 mesh)

11



are needed to ge. accurate transverse forces. For the transverse shear

stresses at the specific location as previously defined, an 81-element mesh

gives a good convergence too (Figs. 7-8).

12



4. ANALYSES AND RESULTS

The composites studied are fiber-composite laminate plates (Fig. 1) made of

AS4 fibers and a Jl thermoplastic-matrix material. The plates have a square

geometry with a constant lamina thickness of 0.005 (in). Biaxial in-plane

loading is applied in the form of uniform displacements along the edges of the

laminates. Two plate geometries with specific laminate characteristics are

analyzed.

In Sec. 4.1.3. and part of Sec. 4.1.1., a unidirectional laminate (in the X-

direction) with dimensions fixed to L = 8 (in), t = 0.40 (in) is considered.

The elastic properties of the AS4/Jl composite material in tension are: Ell =

17.9 x 106 (psi), E 2 2 = 0.9 x 106 (psi), v12 = 0.313, G12 = 013 = 0.77 x 106

(psi), G23 = 0.31 x 106 (psi)

In other analyses, the lengths of the laminated square plates studied are 12

(in) in either directions and the compressive moduli of the AS4/JI composite

material are used. This changes Ell to 15.6 x 106 (psi) while other elastic

properties remain the same. Laminate thickness and lamination parameters may

be different in each case and will be defined in the corresponding sections.

Finite-element models of the full composite plate are used in all analyses.

These enable to predict general buckling mode and higher modes (symmetric and

antisymmetric) and corresponding critical loads in one linearized buckling

analysis. Moreover, using these finite-element meshes combined with

imperfections constructed from the three lowest eigenmodes, potential changes

13



in buckling mode can be modelled in the nonlinear buckling and postbuckling

analysis. Solutions for the load/end shortening response are usually

presented with respect to the normalized loading and displacement variables

'X/Nxcr and U/Ucr, respectively. NXcr is taken as the buckling load giwen by

a linearized buckling analysis, and Ucr as the correspoiding critical end

shortening on the load/displacement curve.

4.1. GLOBAL LOAD-DEFORMATION RESPONSE DURING BUCKLING AND POSTBUCKLING

4.1.1. Imperfection sensitivity

4.1.1.1. Buckling and postbuckling without change in buckling mode

The sensitivity of global buckling and postbuckling to the structural

imperfection is studied. The finite element analyses make use of the 6x6 and

5x5 converged finite-element models, respectively, obtained in the mesh

refinements performed previously. The imperfection sensitivity 7s shown to be

more important for the first case (unidirectional laminate plate) (Fig. 9)

than for the second case (quasi-isotropic laminate plate) (Fig. 10). The

former gives a slightly higher postbuckling stiffness for the case with a 0.1%

imperfection than those with 1% and 10% imperfections (with respect to the

laminate thickness), while the latter gives the same postbuckling responses

for the cases with 0.1% and 1% imperfections, and a very close one for the

case with 10% imperfection. The imperfection sensitivity is likely to depend

on the level of anisotropy of the laminate. However, since the geometric

characteristics of the plates studied in both cases are different (es;p&':iH]

14



the width/thickness ratio), no rigorous conclusion can be made.

4.1.1.2. Buckling and postbuckling with change in buckling mode

For the analysis presented in Sec. 4.2.2. (quasi-isotropic clamped plate under

uniaxial compression) a change in buckling mode is determined in the

postbuckling range. The first deformation mode after buckling is made of one

half sine-wave in both directions (i.e., the symmetric mode) while the new

buckling mode after bifurcation is antisymmetric w'th two half sine-waves in

tie X-direction and one in the Y-direction (see Figs. 11-12). After the

validity of the bifurcation analysis is established, the effect of the

imperfection magnitude (c) is studied. For small imperfections (e.g., e =

0.1% and 1% of the plate thickness) a snap-back type behavior is obtained with

similar postbuckling responses for both imperfection magnitudes considered.

For a large imperfection (e.g., c = 10% of the plate thickness) the change in

the buckling mode occurs gradually at a low load level without snap-back

response (Fig. 13). The out-of-plane displacements are noted to change

differently with nominal loading for the cases with various imperfections

(i.e., 1% and 10% of the plate thickness), (Figs. 14-15). The displacements

are at locations (x,y) = (±2,0) (in) near the points of maximum deflection in

the antisymmetric mode. According to Figs. (13-15) the load at which the

change in buckling mode occurs can be determined as follows:

- For the case with 0.1% and 1% imperfections (Fig. 13) it is the maximum

Load before the snap-back response starts, which leads to a decrease in

the in-plane loading (This corresponds to Nx = 1.47 NXcr for 0.1%

imperfection.).
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- For the case with 10% imperfection, it is the load at which a change in

postbuckling stiffness occurs in the load/end shortenin; curve (Fig. 13).

This load corresponds to a "plateau" for the transverse displacement at

(x,y) - (-2,0) (in) and a zero value for the transverý;e displacement at

(x,y) = (2,0) (in) (Fig. 15). This load value is Nx 1.16 NXcr in this

case.

The load at which a change in buckling mode occurs depends on the imperfection

magnitude used in the nonlinear buckling and postbuckling analysis, whereas

imperfection does not affect the buckling load, as shown previously and in

Fig. 13. In such analysis, the buckling load is defined as the first change

in slope of the load/end shortening curve and corresponds precisely to the

first eigenvalue A1 given by a linearized buckling analysis. On the other

hand, higher eigenvalues (0 2 , A3 , ... .etc) calculated by this linearized

buckling analysis can not represent accurately the loads at which actual

changes in buckling modes may occur. Such an eigenvalue (A > Al) is computed

as the point of neutral equilibrium between its buckling mode (eigenmode) and

the primary in-plane deformation mode (prior to buckling). However change in

buckling mode actually appears after buckling at the point of neutral

equilibrium between the new buckling mode (eigenmode of eigenvalue A > A1 ) and

the previous buckling mode (e.g., eigenmode of eigenvalue Al)

Another concern is the sensitivity of composite buckling and postbuckling to

the shape of the imperfections introduced. For the results presented

previously, a specific linear combination of the three lowest eigenmodes gives

imperfection shapes close to the first mode (Fig. 16). Using a different

linear combination of the three lowest modes (i.e., changing signs of
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normalized eigenmodes when adding them together, as defined in Eq. (4) Sec.

3.1.2.), another type of imperfection shape can been defined (Fig. 17). This

seconcu shape is close t-o the second mode of the structure. Therefore

comparison between buckling and posthuckling solutions obtained with these two

extreme imperfection shapes should clearly characterize the extent of the

sensitivity of the structure to different imperfections.

For tle case with 10% imperfection, the load/end shortening curves obtained

with he two imperfection shapes are slightly different (Fig. 18). The

solution corresponding to an imperfection shape close to the second eigenmode

is slightly lower than the other one, and the change in buckling mode occurs

much more gradually. In that case the activation of the second mode at

buckli ng is more important since the imperfection shape is closer to the

second mode. By examining the transverse displacement development for this

imperf,,-ction, _he composite plate is found to buckle in a mode made of its two

lowest modes with the second mode gradually becoming the preponL,,rant one. No

sudden change in postbuckling stiffness occurs and no precise load for the

change in buckling mode can be defined.

With a 1% imperfection, the postbuckling responses for both imperfection

shapes are very similar (Fig. 19). Buckling occu-s in the first mode of the

structure, and the composite encounters a snap-back behavior when it changes

in buckling mode. For these two extreme imperfection shapes, the only

difference noticed in the postbuckling response is the load at which the snap-

back response starts. The solution using the imperfection shape close to the

second eigenmode gives a lower bifurcation load than the other one. Therefore
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activation of this mode takes place sooner after buckling in that case.

These analyses show that buckling and postbuckling responses of a composite

laminate plate are sensitive to imperfections in the caý ý of a change in

buckling mode only. Imperfection magnitude is more critical than imperfection

shape in that case. In subsequent analyses of Sec. 4.1., the imperfections

used have magnitudes equal to 1% of tLe laminate plate thickness and shapes

cilo.e to the first eigenmode (buckling mode).

4.1.2. Effect of stress-biaxiality ratio

The composite plate studied is a (0/90/+45]6s clamped plate with a

thickness/length ratio of 0.02. The values chosen for the stress-biaxiality

ratio (Nx/Ny) are: 0, 0.25, 0.5, 1, 2, 4, 8 ,16 and - (( ase of uniaxial

compression along the X-axis). As expected, the buckling loads for NX/NY

equal to 0 aiid •o 0.25 and 4. 0.5 and 2, respectively, are the same with

int-erchanging "'cr and N . A buckling envelope in the compression-

(iomflpression range is coiist-ucted (Fig. 20) and is almost a straight line, the

buckling modes in both directions being the same (one half ine-wave).

In the postbucklinm'. range, higher levels of biaxial stress state compared to

the uniaxial case are shown to reduce the postbuckling •tiffness in both

directions (Figs. 21-22), especially in the transverse d rection (Y-axis).

Fig. 22 shows also that for a low level of the biaxial str ss state, bucklinig

changes the sign of tangent st iffness which was negat.ive in the prebuckling

range. In these cases the state of deformation torn, from tenssion to
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compression in the Y-direction at buckling (positive postbuckling stiffness).

4.1.3. Effect of boundary condicions

Comparisons of four types of boundary conditions are performed for the case of

a 00 unidirectional laminate square plate (with a thickness/length ratio of

0.05) kndcr uniaxial compression (Ny Y 0) and biaxial compression (Nx/Ny = 2).

The fou,' boundacy condLtions are:

(1) All cdges are clamped (clamped/clamped case)

(2) All edges are simply-supported (S.S./S.S. case)

(3) The edges perpendicular to the X-axis are simply-supported, and the

ecges perpendicular to the Y-axis, clamped (S.S./clamped case)

(4) The edges perpendicular to the X-axis are clamped, and the edges

perpendicular to the Y-axis, simply-supported (clamped/S.S. case)

Figs. (23-24) show very interesting results. The full clamped plate does not

necessarily give the highest postbuckling stiffness for both loading cases.

Actually the clamped/S.S. case and the S.S./clamped case give, respectively,

the lo,.;tst and highest stiffness in uniaxial compression, while in biaxial

compression the fully simply-supported plate gives a much lower postbuckling

stiffness than other cases. In terms of buckli,,g load, the fully clamped

plate l is the highest buckling load, as expected, while the fully simply-

suppor",d plate has tHe lowest, in both loading conditions. The ratio of the

bucklin' load for the clamped plate to the one for the simply-supported plate

is 2.0 in UniaNial compression and 2.3 in biaxial compression.
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These results (Figs. 23-24) demonstrate the important ef sects of boundary

conditions on the buckling and postbuckliig behavior ai t the interaction

effects between boundary conditions and loading variables.

4.1.4. Effect of lamination layup

The composite plate studied has a [0/90/±(0)]6s laminate stacking sequence

with a thickness/length ratio of 0.02 and is clamped along all edges. The

effect of lamination layup on the buckling and postbuckling behavior of the

structure is analyzed by varying the value of the angle 0 from 00 to 90' in

the [0/90/±(O)]6s laminate system, for a stress-biaxiality ratio of 2 (Fig.

25). The prebuckling stiffness is significantly reduced with increasing 0

while the drop in the postbuckling stiffness is relatively smaller. The

interesting result is that the buckling load (given by the linearized buckling

analyses performed to construct the imperfections used in the subsequent

postbuckling analyses) differs only by 2.8% from the maximum value for 0 = 00

to the minimum value for 0 = 90°. For such clamped plates the optimum

lamination in terms of prebuckling stiffness, buckling load and postbuckling

stitfness corresponds to 0 = 00 but no drastic difference is shown while

changing the lamination variable.

4.2. TRANSVERSE SHEAR DEVELOPMENT IN POSTBUCKLING

The composite plate considered is a [0/90/±45]12s clamped plate with a

thickness/length ratio of 0.04. The mesh refinement performed for this

composite plate to validate the solution convergence on the transverse shear
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in the buckling and postbuckling analyses results in an optimized mesh of 81

elements (see Sec. 3.2.). This mesh is used in the following analyses.

4.2-1. Imperfection sensitivity

The imperfection sensitivity on transverse shear development to the magnitude

of imperfection is studied. The imperfections are made of a linear

combination of the three lowest eigenmodes, which gives imperfection shapes

close to the first eigenmode, as presented previously (Fig. 16). Three

different magnitudes (0.1%, 1% and 10% of the laminate plate thickness,

respectively) are considered. The first two imperfection sizes give the same

transverse section force distributions in the postbuckling range. The larger

imperfection gives the higher maximum transverse shear stresses, and slightly

different stress distributions before and after buckling but the differences

die out as the applied load and the out-of-plane displacement increase.

Convergence is obtained beyond Nx = 1.5 Nxcr for these analyses (see Figs. 26-

27 for the stresses at the location (x,y) = (-3,-3) (in)).

Transverse shear development is then sensitive to the magnitude of

imperfection at buckling whereas it is not well in the postbuckling range.

Therefore this effect may not be critical, in terms of structural failure

through delamination, since transverse shear stresses are large in the

postbuck]ing range only. Subsequent analyses make use of imperfections with

similar shapes as the ones presented here and scaled to 1% of the laminate

plate thickness.
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4.2.2. Effect of stress-biaxiality

The potential effect of loading variables on the transverse shear stress

development at buckling and in the postbuckling range is studied. In order to

assess this effect, two types of in-plane compressive loading (uniaxial

compression along the X-direction and biaxial compression with N = 2) are

considered in combination with two types of boundary conditions (simply-

supporued and clamped). In the four cases studied the plates buckle in a half

sine-wave in both in-plane directions. This buckling mode remains in the

postbuckling range, up to Nx = 2 NXcr, except for the clamped plate under

uniaxial compression. For this case a bifurcation occurs in an antisymmetric

mode with two half sine-waves in the X-direction and one half sine-wave in the

Y-direction. This case is presented previously in Sec. 4.1.1.2. to

characterize the imperfection sensitivity of the structure in case of a change

in buckling mode.

For each boundary condition used, the transverse section-force distributions

obtained under uniaxial compression and biaxial compression are similar. In

terms of maximum transverse shear forces Qx and Qy (Figs. 28-29) developed in

buckling and postbuckling, biaxial compression gives hither transverse shear

stresses than uniaxial compression for the simply-supported plate. No such

conclusion can be drawn for the clamped plate before it encounters a change in

buckling mode under uniaxial compression. However the transverse shear

increases drastically after the change in buckling mode in this case. The new

buckling mode is an antisymmetric mode made of two half sine-waves in the X-

direction and one half sine-wave in the Y-direction. Therefore this points
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out that the larger the number of half sine-waves the buckling mode is made

of, the bigger the transverse shear stresses are.

The results presented in this study show that loading variables seem to have

no direct effect on the transverse shear deformation developed in the

postbuckling response.

4.2.3. Effect of boundary conditions

From the four analyses presented in the previous section, the effect of the

bound3ry conditions or, the transverse shear development in buckling and

postbuckling can be analyzed. Each boundary condition considered (simply-

supported or clamped) gives different transverse shear stress distributions.

For the simply-supported plate the distributions of the two transverse section

forces (Figs. 30-31) are symmetric while this is not the case for the clamped

plate (Figs. 32-33). The maximum transverse shear forces Qx and Qy (Figs. 28-

29) developed in buckling and postbuckling are lower with simply-supported

boundary conditions than with clamped boundary conditions. Moreover, the

transverse shear stresses in both directions are in the same range for the

former boundary conditions, whereas for the latter ones the stresses in the Y-

direction are two times larger than the ones in the X-direction (corresponding

to Qy and Qx, respectively) for both loading conditions. This relates to the

non-symmetric transverse shear stress distributions in both directions

obtained for the clamped plate. Therefore the transverse shear stresses

developed in the postbuckling response depend strongly on the boundary

conditions in terms of stress levels as well as stress distributions.
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4.3. EFFECT OF THICKNESS

The effect of laminate thickness on buckling and postbuckling behavior of

composite plates is studied for [0/ 9 0/± 4 5 ]ns clamped plates under biaxial

compression (Nx/Ny = 2). Four thickness/length ratios are considered: 0.02,

0.04, 0.06, 0.08. The first and last ratios correspond to the composite

plates analyzed in Sec. 3.2. to assess the solution convergence. The mesh

refinements performed in this previous study result in a 5x5 optimal finite-

element mesh for the lowest thickness/length ratio and a 9x9 mesh for the

largest one. The last mesh is used for two other thickness/length ratios

(0.04, 0.06) considered in this analysis.

4.3.1. Global load-deformation response during buckling and postbuckling

Linearized buckling analyses are performed to determine the three lowest

buckling modes and their corresponding eigenvalues. From these three modes,

imperfections (with shapes close to the first eigenmode and magnitudes equal

to 1% of the plate thickness) are constructed to model the buckling and

postbuckling response for each length/thickness ratio considered. To assess

the effect of transverse shear on the load-deformation responses of the

laminates, a load parameter (NxL 2 /D 2 2 ) is defined in such form that buckling

would occur at the same value for all thickness/length ratios if transverse

shear was not present. Likewise, the strain parameter UL/t2 is such that all

load/displacement curves are identical prior to buckling. The load/end

shortening curves obtained (Fig. 34) show that increasing the laminate plate

thickness reduces the non-dimensionalized buckling load and postbuckling
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stiffness, due to transverse shear.

4.3.2. Buckling loads and modes

A plot of the three lowest eigenvalues for the composite buckling with

different thickness/length ratios shows that increasing the laminate thickness

reduces the buckling load (i.e., first eigenvalue) and higher eigenvalues (due

to increasing transverse shear) (Fig. 35). Moreover, the ratios of higher

eigenvalues to the first one decrease as the thickness/length ratio increases.

Therefore thick-section laminates are likely to encounter changes in buckling

modes or even multiple buckling modes in the postbuckling as the eigenvalues

of the composite become closer together. For the composite plates studied

here, the first and second modes are the same for all four thickness/length

ratios (symmetric mode and antisymuymetric mode, respectively) while the third

one is antisymmetric for the two smallest ratios, and symmetric for the two

largest ones.

4.3.3. Postbuckling load-deformation

The postbuckling responses of the four laminates considered (Fig. 34) show

that, with increasing thickness/length ratios, the postbuckling stiffness

gradually decreases as the load increases (especially for t/L = 0.08).

Examining the transverse displacement development, activation of higher (i.e.

second and third) modes is found to take place beyond Nx = 1.5 Nxcr for the

highest thickness/length ratio. This relates to the conclusion of the

previous section which states that thick-section laminates are more likely to
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encounter changes in buckling mode or multiple modes than thin laminates.

4.3.4. Interlaminar shear development

The maximum transverse shear forces Qx and Qy developed during buckling ana

postbuckling are computed for the composites with four thickness/length ratios

considered. These values are normalized with respect to the in-plane force Nx

as before. The results (Figs. 36-37) show that high transverse shear stresses

develop rapidly at buckling and during postbuckling in thick laminates. The

interlaminar stresses increase as the thickness/length ratio and the load

increase, leading to the decreases in the postbuckling composite laminate

stiffness pointed out previously in Secs. 4.3.1 and 4.3.3.

The rapid increase in the transverse shear force Qx for the composite with

t/L - 0.08 (Fig. 36) under loads beyond Nx = 1.5 NxCr may be caused by the

activation of the second and third modes noted previously. The same type of

response can also be noticed for the case with t/L = 0.06 beyond Nx = 1.7 NXcr

and activation of higher modes may also take place for this case. This

explains the gradual decrease of postbuckling stiffness with increasing load

for these two cases. Therefore the development of high transverse shear

stresses for thick laminates precipitates further as activation of higher

modes occurs in the postbuckling range. This kind of deformation is critical

for compressive load-bearing capacity of thick laminates since eigenvalues of

such structures get close together as the laminate thickness/length ratio

increases.
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6. CONCLUSIONS

Investigation of the buckling and postbuckling behavior of thick-section

composite laminates is conducted in this study. From the analyses of global

load/displacement response and transverse shear development for various

parameters, the following conclusions can be drawn.

The global load/displacement response of a composite laminate plate is shown

to be sensitive to imperfection in the case of a change in buckling mode only.

Biaxial loading reduces the postbuckling stiffness compared to uniaxial

loading, for similar buckling modes. Boundary conditions have a strong effect

on the buckling load and the postbuckling stiffness and this effect depends on

the applied loading. On the other hand, for the [0/ 9 0/±0]ns laminate system

studied, no effect of lamination layup on buckling and postbuckling is found.

Buckling and, especially, postbuckling induce the development of high

transverse shear stresses in composite laminates. Transverse shear stress

levels are sensitive to the magnitude of imperfection at buckling but this

effect dies out in the postbuckling range. No direct effect of stress-

biaxiality ratio on the transverse shear development during buckling and

postbuckling is also found. On the other hand, boundary conditions have a

strong effect on the transverse shear stress magnitudes as well as the

transverse shear stress distributions. As for the global load/displacement

response, this effect depends on the applied in-plane loading of the laminate.

Increasing laminate thickness is shown to reduce the buckling load and
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postbuckling stiffness of composite plates, due to the development of

transverse shear. Moreover, the postbuckling stiffness of thick laminates

decrease as the applied load increases. This is due to the development of

high transverse shear stresses in thick laminates as the load increases during

postbuckling. This effect can even precipitate by activation of higher modes.

Indeed, for thick laminates, the buckling loads and higher eigenvalues get

close together and potential changes in buckling mode or multiple buckling

modes can be obtained in postbuckling. Therefore, development of transverse

shear is critical for compression load/bearing capacity of thick laminates.
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4 -2DDEC-01
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7 +1DXO-01
a +2fl0(-01

10 +flEf-O111 0 0E-0

t/L - 0.04
L = 12 (in)
Nx = 1.49 Nxcr

2

Fig. 12. Transverse displacements distribution after a change in buckling

mode for a clamped [0/ 9 0/± 4 5 ]12s plate under uniaxial compression

(Nx - 1.49 Nxcr, 1% imperfection, t/L = 0.04)
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L ý-r12 (n)
Ny- = 0

ch.barlge inDrCLIý,nhgI mode (O1.%)f

1.50 chance in

buckinng moddee(( )

L.0 c I hang,2 in
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0.1% imperfection
a-o~-e_ 1 ., imperfection
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&08 IilL I - I~iI Iii t~ I~ I I I I I I 0I I II00 0u,.50,-- M 1 ý.0 150 2.00 2.50 3.00 3.50 4.00 4.50

U / iJ•,

Fig. 13. Effect of imperfection sensitivity on buckling and postbuckling

response (with a change in buckling mode) of a clamped

[0/ 9 0/± 4 5 1 12s plate under uniaxial compression

(Ny = 0, t/L. 0.04)
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t/L = 0.04
L =12 (in)
Ny =0 /

1.50 /

\L-

z•

0.50

1% imperfection with 1 st mode geometry

°° 0 -5oo-.00 0.0 5.00

W / Wr (for 1% imperfection)

Fig. 14. Transverse displacements W at (±2,0) for a clamped [0/90/±45112s

plate under uniaxial compression (1% imperfection, N = 0,

t/L - 0.04)
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,tn 1I mode geometry
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K / WI, (for I- , per ,-

Fig. 15. Transverse displacements W at (±2,0) for a clamped [0/90/±45]12s

plate under uniaxial compression (10% imperfection, Ny = 0,

t/L 004)
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-T 1-i 1-

z (in)

1 +2JT7E-09g
2 2-Z77E-03
3 4a-5.5E03
4 +&33E-0
5 +1.11E--02
6 4-1Z.38-02
7 +1.66E-024
8 +l-q.4E--02
9 +222E--02

10 +2,50E-02
11 +277E-02
12 4.a05E-027
13 i-33E--02
14 +3.61 E-025
15 *4-BBE--02
16 +d4.16E--027 7
17 +i4.44E--02
18 4-4.72E--02
19 4.5LOOE-02

2

Fig. 16. Constructed imperfection geometry close to the first eigenmode

for a 10% imperfection
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z (in)

2 -4A0E--02 1 2 4 210
3 -4LCC*-02
4 -3-9X--021
5 -. IDX-r-C
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8 -ILOE-02
9 -1, LOE-02

10 -5SOOE-03
11 4CE--N1 2 3 6 7
1~4,%OOE--O3l 4 6 7 6 0

13 + 1.COE-02
14 + 1.50E-02

16 +25ME--02 23 45677 60
17 +3.OC)E--02
19 +a4 50E-O2 17

2 1 41 02

24 3210

00

Fig. 17. Constructed imperfection geometry close to the second elgenmode

for --, 10% imperfucLi'nn
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1.50 -chanqe in buckling mode
(imperfection geometry
close to 1I mode)

2 2 egenmode dorcir ,nt
"(impe-r'ectior qeor-retry

cio~e Zir

z 1.00 - • "
1.00].• eigerimode domrn .crj-ý tx /7I (imperfection geometry

close to 2 "' mode)

0.50

10% Imperfection, geometry close to the 1' e enmoce
oe 10% imperfection, geometry close to the 2n1 genmce

0.03 0 0.50 1.00 1.50 2.00 2.50 3.00 3. C, 4.00 4. 50--
IJ/Ucr

Fig. 18. Effect of imperfection geometry on buckling and po5;tbuckling

response (with a change in buckling mode) of a claLped

[0/90/±45]12, plate under uniaxial compression (10* imperfection,

Ny = 0, t/L = 0.04)
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- (im per rection fo.r: jr ,
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0.08. 0 .• - .Q) 1 .j0 2.00 2.50 3.00 3.50 4.00

L /Ucr

Fig. 19. Effect of imperfection geometry on buckling and postbuckling

response (with a change in buckling mode) of a clamped

(0/90/j45112, plate under uniaxial compression (1% imperfection.

N-. - 0, t/L . 0,04)
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t/L = 0.02
7- L = 12 (in)
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5
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O0 I11Ii IIi I I I I I I i ii I11Ii 1 I! 1 I i 1iIN,

0 1 2 3 4 5 6 7 8
-Nxcr (ksi.in)

Fig. 20. Critical load-stability envelope for a clamped [0/90/±45]6s plate

under biaxial states of stress (t/L = 0.02)
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9 t,iL _ 0.02 A•/ /

4-
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44'7

NxNy 6

2~1 G•!: 5--e NIx/Ny = 1

p}.••-•Nx/Ny = 4
.£,• -ýe NX/Ny = 2
/• • iNX!Ny = 1

4 0 . 4 0.06 7 .0' o1

Fig. 21. Effect of stress-biaxiality ratio on buckling and postbuckling

response (load N., versus end-shortening U) along the X-axip

for- a clamped [0/90/t_4516, plate (t/L = 0.02)
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9 - t/L = 0.02
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S.- Ny = 0
2 Nx/Ny = 16

--,-, -- 8 Nx/Ny
- Nx/Ny = 4

1 i*Nx/Ny = 1

0 0 0.02 0.04 0.06 0.08 0.10
V (in)

Fig. 22. Effect of stress-biaxiality ratio on buckling and postbuckling

response (load Nx versus end-shortening V) along the Y-axis

for a clamped [0/ 9 0/± 4 5 1 6s plate (t/L = 0.02)

52



2.0

t/L = 0.05 _

1.5

xZ 1.0
xz

0.5 *4---* clamped/clomped
me-a" s.S/s.s
000" clamped/S.S.

S.S./clamped

0.0 1 2 3 4 5
U/Ucr

Fig. 23. Effect of boundary conditions on buckling and postbuckling response

of a unidirectional laminate plate under uniaxial compression

(Ny - 0, t/L - 0.05)
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2.0

t/L = 0.05
L = 8 (in)
Nx/Ny = 2

1.5

L

x
zý 1.0 -

X
z

0.5 - clomped/clomped
S.S/S.S

94ee-0 clamped/S.S.
S&S.S./clamped

2 4 6 8
U/Ucr

Fig. 24. Effect of boundary conditions on buckling and postbuckling response

of a unidirectional laminate plate under biaxial compression

(Nx/N y 2, t/L = 0.05)

54



8

t/L o0.02
L = 12 (in)

7 Nx/Ny = 2

6

5

.54-

z

3

2- , (0/90/0/01 6s
G-GOG [0/90/15/-15] 6s•a-ee~a 0/.90/30/.-301 6s

/ •.& [0/90/45/-45] 6s
ooooo (0/90/60/-60) 6s
1� �( (0/90/75/-751 6s
+--+-+ [0/90/90/901 6s

Co.o 0.05 0.10
U (in)

Fig. 25. Effect of lamination layup on buckling and postbuckling response

of clamped plates under biaxial compression (Nx/Ny = 2, t/L = 0.02)
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t/L = 0.04
0.08 L =12 (in)

Nx/Ny 2

I postbuckling
0.07

buckling

0.06 -

0.05
x
z
xo

0.04

0.03 -

0.02 -. 0.1% imperfection
Gee"1 - imperfection

- S 10.% imperfection

0.01 -

0 . 0 o.0O 0.50 1.00 1.50 2.00

Nx/Nxcr

Fig. 26. Effect of imperfection sensitivity on transverse shear Qx at

(-3,-3) (in) in a clamped [0/ 9 0/±45]12s plate under biaxial

compression (Nx/Ny = 2, t/L = 0.04)
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I postbuckling

t/L 0.04
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Nx/Ny= 2

0.07 Sbuckling - 1
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0.02 *4- 0.1% imperfection
Goo"e 1-% imperfection

1 10-% imperfection
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0.0800 0.50 1.00 1.50 2.00

Nx/Nxcr

Fig. 27. Effect of imperfection sensitivity on transverse shear Qy at

(-3,-3) (in) in a clamped [0/90/±45]12s plate under biaxial

compression (Nx/Ny = 2, t/L = 0.04)
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0.20

locations of Ox max:
-clamped plate: (±3.3,0.)
-clomped plate after change in buckling mode (Ny=0): (±4.7,0.)
-simply-supported plate: (± 6.,0.)

t/L =0.04

0.5 L =12 (in) postbucHlinq

buckling -]chcnce in

x I /~C4'% 0)

0.10
E

X

0.0
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eeoclamped plate, Ny = 0
6~~-6-c S.S. plate, Nx/y = 2

0*0 0o 0.50 1 .00 1 .50 2.00

N X/ N xcr

Fig. 28. Effects of boundary conditions and stress-biaxiality on maximum

transverse shear Qx in a [0/90/±45]12, laminate (t/L = 0.04)
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- locations of Qy max:
- -clamped plate: (0.,±6.)

-clamped plate after change in buckling mode (Ny=O): (±2.,±6.)
0.40 -simply-supported plate: (0.,±6.)

t/L = 0.04
0.35 L =12 (in)
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- buckling

x
z
- 0.25
x change in
0 buckling mode

I Ny 0)
>, 0.20

0.15

clamped plate, Nx/Ny 2
00 -e-eE- clamped plate, Ny =

0.10-�a-E S.S. plate, Nx/Ny = 2

SS.S. plate, Ny =0

0 05

0.08.000  0.50 1.00 1.50 2.00

Nx/Nxcr

Fig. 29. Effects of boundary conditions and stress-biaxiality on maximum

transverse shear Qy in a [0/90/±45]12s laminate (t/L = 0.04)
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Qx (psi. in)

1 -1 -0E+03

2 -1• .E403
3 -6.00+02
4 ---6O+02
5 --4XE4-02
6 -1994.02
7 +2J0E-04
9 +=.00£+02
9 +4.006P02

10 +B.00E+02
11 -&OOE-402
12 +1.00+403
13 +1.xE4-a3 2~ 0

32

t,/L = 0.04 1

L = 12 (in) 2
Nx/Ny= 2 2

2 

L

Fig. 30. Distribution of transverse shear Qx at Nx = 1.5 Nxcr in a

simply-supported (0/90/±45112s plate under biaxial compression

(Nx/Ny = 2, t/L = 0.04)
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Qy (psi. in)
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2 -I•0O+0W
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13 +1.2(•4E03

, 7/7 7 7

t/L = 0.04
L -12 (i n)
Nx/Ny = 2

2

Fig. 31. Distribution of transverse shear Qy at Nx = 1.5 Nxcr in a

simply-supported [0/ 9 0/± 4 5 1 12s plate under biaxial compression

(Nx/Ny = 2, t/L = 0.04)
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Qx (psi.in)

I -403C+03
2 -I.OE403
3 -2fL0(+03
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5 +1~xE-03
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7 Q2.CO403

9 -4DOED3

t/L = 0.04
L = 12 (in)
Nx/Ny = 2

2

Fig. 32. Distribution of transverse shear Qx at Nx= 1.5 NxCr in a

clamped [0/ 9 0/± 4 5 ]12s plate under biaxial compression

(Nx/Ny = 2, t/L = 0.04)
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Qy (psi. in)

I -Zfl0(+0
2 -4D0X+03
3 -aoo(03
4 -2D0E+03
5 -4.99E-02
6 +1.0E-03
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8 +2..0E+03
9 4-.3OE403

10 +4.OOE+03
11 +5.0OE44-C3

t/L =0.(- 4
L = 12 (in)
Nx/Ny = 2

2

Fig. 33. Distribution of transverse shear Qy at Nx= 1.5 NXcr in a

clamped [0/90/±45]12s plate under biaxial compression

(Nx/N y = 2, t/L = 0.04)
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Fig. 34. Effect of laminate thickness on buckling and postbuckling response

of a clamped [O/9O/±45]ns plate under biaxial compression

(Ny/N y = 2)
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Fig. 35. Effeact of laminate thickness on lowest three eigenvalues of a

clamped [0/90/±45]ns plate under biaxial compression (Nx/INr 2)

65



0.40

L = 12 (in)
Nx/Ny 2 postbuckling

II

0.55 buckling =

0.30 -/

"location of Qx max:
(x=y) (±6..±4.7)

0.25 I " /
x' -02
Z -

>0.20 -- N

location of Qx max:
0.1 (x.y) = (±3.3.0.)

0.15

0.10
_ *-*-.--* t/L 0.08
_ Gee t/L 0.06
_ t/L 0.04

t/L 0.02 ... ".
0.05

0.08.00 0.50 1.00 1.50 2.00

Nx/Nxcr

Fig. 36. Effect of laminate thickness on maximum transverse shear Qx in

buckling and poscbuckling response of a clamped [0/ 9 0/± 45]nis plate

under biaxial compression (Nx/Ny = 2)
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Fig. 37. Effect of laminate thickness on maximum transverse shear Qy in

buckling and postbuckling response of a clamped [0/ 9 0/± 4 5 ]ns plate

under biaxial compression (Nx/Ny = 2)
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